基礎解析怎麼求

日期:2021-10-12 分類:精選百科 投稿:王剛

最佳答案 先求出齊次或非齊次線性方程組的一般解,即先求出用自由未知量表示獨立未知量的一般解的形式,然後將此一般解改寫成向量線性組合的形式,則以自由未知量為組合係數的解向量均為基礎解系的解向量。由此易知,齊次線性方程組中含幾個自由未知量,其基礎解系就含幾個解向量。

基礎解析怎麼求

先求出齊次或非齊次線性方程組的一般解,即先求出用自由未知量表示獨立未知量的一般解的形式,然後將此一般解改寫成向量線性組合的形式,則以自由未知量為組合係數的解向量均為基礎解系的解向量。由此易知,齊次線性方程組中含幾個自由未知量,其基礎解系就含幾個解向量。

基礎解系是指方程組的解集的極大線性無關組,即若干個無關的解構成的能夠表示任意解的組合。基礎解系需要滿足三個條件:

(1)基礎解系中所有量均是方程組的解。

(2)基礎解系線性無關,即基礎解系中任何一個量都不能被其餘量表示。

(3)方程組的任意解均可由基礎解系線性表出,即方程組的所有解都可以用基礎解系的量來表示。

值得注意的是:基礎解系不是唯一的,因個人計算時對自由未知量的取法而異。